Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biotechnol ; 309: 44-52, 2020 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-31891733

RESUMO

Process intensification in mammalian cell culture-based recombinant protein production has been achieved by high cell density perfusion exceeding 108 cells/mL in the recent years. As the majority of therapeutic proteins are produced in Chinese Hamster Ovary (CHO) cells, intensified perfusion processes have been mainly developed for this type of host cell line. However, the use of CHO cells can result in non-human posttranslational modifications of the protein of interest, which may be disadvantageous compared with human cell lines. In this study, we developed a high cell density perfusion process of Human Embryonic Kidney (HEK293) cells producing recombinant human Erythropoietin (rhEPO). Firstly, a small-scale perfusion system from commercial bench-top screening bioreactors was developed for <250 mL working volume. Then, after the first trial runs with CHO cells, the system was modified for HEK293 cells (more sensitive than CHO cells) to achieve a higher oxygen transfer under mild aeration and agitation conditions. Steady states for medium (20 × 106 cells/mL) and high cell densities (80 × 106 cells/mL), normal process temperature (37 °C) and mild hypothermia (33 °C) as well as different cell specific perfusion rates (CSPR) from 10 to 60 pL/cell/day were applied to study the performance of the culture. The volumetric productivity was maximized for the high cell density steady state but decreased when an extremely low CSPR of 10 pL/cell/day was applied. The shift from high to low CSPR strongly reduced the nutrient uptake rates. The results from our study show that human cell lines, such as HEK293 can be used for intensified perfusion processes.


Assuntos
Reatores Biológicos , Técnicas de Cultura de Células/métodos , Eritropoetina/biossíntese , Células HEK293/metabolismo , Perfusão/métodos , Proteínas Recombinantes/biossíntese , Animais , Células CHO/metabolismo , Contagem de Células , Cricetulus , Humanos , Oxigênio
2.
Biotechnol Prog ; 35(1): e2732, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30320962

RESUMO

A stochastic approach of copurification of the protease Cathepsin L that results in product fragmentation during purification processing and storage is presented. Cathepsin L was identified using mass spectroscopy, characterization of proteolytic activity, and comparison with fragmentation patterns observed using recombinant Cathepsin L. Cathepsin L existed in Chinese hamster ovary cell culture fluids obtained from cell lines expressing different products and cleaved a variety of recombinant proteins including monoclonal antibodies, antibody fragments, bispecific antibodies, and fusion proteins. Therefore, characterization its chromatographic behavior is essential to ensure robust manufacturing and sufficient shelf life. The chromatographic behaviors of Cathepsin L using a variety of techniques including affinity, cation exchange, anion exchange, and mixed mode chromatography were systematically evaluated. Our data demonstrates that copurification of Cathepsin L on nonaffinity modalities is principally because of similar retention on the stationary phase and not through interactions with product. Lastly, Cathespin L exhibits a broad elution profile in cation exchange chromatography (CEX) likely because of its different forms. Affinity purification is free of fragmentation issue, making affinity capture the best mitigation of Cathepsin L. When affinity purification is not feasible, a high pH wash on CEX can effectively remove Cathepsin L but resulted in significant product loss, while anion exchange chromatography operated in flow-through mode does not efficiently remove Cathepsin L. Mixed mode chromatography, using Capto™ adhere in this example, provides robust clearance over wide process parameter range (pH 7.7 ± 0.3 and 100 ± 50 mM NaCl), making it an ideal technique to clear Cathepsin L. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 35: e2732, 2019.


Assuntos
Proteômica/métodos , Animais , Células CHO , Catepsina L , Cromatografia de Afinidade , Cromatografia por Troca Iônica , Cricetinae , Cricetulus , Concentração de Íons de Hidrogênio , Proteólise , Proteínas Recombinantes/metabolismo
3.
Biotechnol J ; 13(10): e1800036, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29957873

RESUMO

The optimization of bioprocesses for biopharmaceutical manufacturing by Chinese hamster ovary (CHO) cells can be a challenging endeavor and, today, heavily relies on empirical methods treating the bioreactor process and the cells as black boxes. Multi-omics approaches have the potential to reveal otherwise unknown characteristics of these systems and identify culture parameters to more rationally optimize the cultivation process. Here, the authors have applied both metabolomic and proteomic profiling to a perfusion process, using CHO cells for antibody production, to explore how cell biology and reactor environment change as the cell density reaches ≥200 × 106 cells mL-1 . The extracellular metabolic composition obtained in perfusion mode shows a markedly more stable profile in comparison to fed-batch, despite a far larger range of viable cell densities in perfusion. This stable profile is confirmed in the extracellular proteosome. Furthermore, the proteomics data shows an increase of structural proteins as cell density increases, which could be due to a higher shear stress and explain the decrease in cell diameter at very high cell densities. Both proteomic and metabolic results shows signs of oxidative stress and changes in glutathione metabolism at very high cell densities. The authors suggest the methodology presented herein to be a powerful tool for optimizing processes of recombinant protein production.


Assuntos
Contagem de Células , Técnicas de Cultura de Células , Metaboloma , Proteoma , Animais , Reatores Biológicos , Células CHO , Cricetulus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...